Multi-level substructuring combined with model order reduction methods
نویسندگان
چکیده
منابع مشابه
Hierarchical Substructuring Combined with Svd-based Model Reduction Methods
The direct applicability of SVD-based methods in model reduction of large linear systems is very limited. However, substructuring methods are a possibility to use these approaches. A method called Automated Multilevel Substructuring (AMLS) has been successfully applied to eigenvalue computations of very large systems. We present a similar substructuring approach for linear time-invariant (LTI) ...
متن کاملAutomated Multi-Level Substructuring for nonlinear eigenproblems
In this paper we generalize the automated multi–level substructuring method to certain classes of nonlinear eigenvalue problems which can be partitioned into an essential linear and positive definite pencil and a small residual. The efficiency of the method is demonstrated by numerical examples modeling damped vibrations of a structure with nonproportional damping, a gyroscopic eigenproblem, an...
متن کاملModel order reduction for multi-terminal circuits
Analysis of effects due to parasitics is of vital importance during the design of large-scale integrated circuits, since it gives insight into how circuit performance is affected by undesired parasitic effects. Due to the increasing amount of interconnect and metal layers, parasitic extraction and simulation may become very time consuming or even unfeasible. Developments are presented, for redu...
متن کاملThe Skeleton Reduction for Finite Element Substructuring Methods
We introduce an abstract concept for decomposing spaces with respect to a substructuring of a bounded domain. In this setting we define weakly conforming finite element approximations of quadratic minimization problems. Within a saddle point approach the reduction to symmetric positive Schur complement systems on the skeleton is analyzed. Applications include weakly conforming variants of least...
متن کاملPreconditioners for High Order Mortar Methods based on Substructuring
A class of preconditioners for the Mortar Method based on substructuring is studied. We generalize the results of Achdou, Maday and Widlund (AMW99), obtained for the case of order one finite elements, to a wide class of discretization spaces including finite elements of any orders. More precisely, we show that the condition number of the preconditioned matrix grows at most polylogarithmically w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2012
ISSN: 0024-3795
DOI: 10.1016/j.laa.2011.02.040